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Abstract
Starting from an exact expression for the dynamical spin susceptibility in
the time-dependent density functional theory, a controversial issue regarding
exchange interaction parameters and spin-wave excitation spectra of itinerant
electron ferromagnets is reconsidered. It is shown that the original expressions
for exchange integrals based on the magnetic force theorem (Liechtenstein et al
1984 J. Phys. F: Met. Phys. 14 L125) are optimal for calculations of the magnon
spectrum, whereas the static response function is better described using the
‘renormalized’ magnetic force theorem given by Bruno (2003 Phys. Rev. Lett.
90 087205). This conclusion is confirmed by ab initio calculations for Fe and
Ni.

An efficient scheme for making first-principles calculations of exchange interaction parameters
in magnets based on a so-called ‘magnetic force theorem’ (MFT) [1, 2] in the density functional
theory is frequently used for the analysis of exchange parameters for different classes of
magnetic materials: dilute magnetic semiconductors [3], molecular magnets [4], colossal
magnetoresistance perovskites [5], transition metal alloys [6], hard magnetic materials such
as PtCo [7] and many others. Recently this method was generalized to take into account the
correlation effects and successfully used for the quantitative estimation of exchange interactions
in Fe and Ni [8, 9]. At the same time, the formal status of this approach is still not well defined,
since a general mapping of formally rigorous spin density functional to an effective classical
Heisenberg Hamiltonian can be made only approximately. It was noticed even in the first work
on the MFT [1] that only the expression for spin-wave stiffness constant D is reliable. In terms
of the diagrammatic many-body approach this means that the exchange integrals (Ji j) should
in general contain vertex corrections [10]. It is shown in [9] that the expressions of [1, 2]
can be derived diagrammatically in a direct way from the calculations of the total energy
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variation under spin rotations with the only assumption being that the vertex corrections can
be neglected, without any reference to the magnetic force theorem. At the same time, using a
general expression for spin-wave stiffness due to Hertz and Edwards [11], one can prove that
the vertex corrections to D are cancelled for any local approximation for the self-energy (or,
in the density functional method, for the local exchange–correlation potential) [12]. Recently
Bruno has suggested [13] corrections to the MFT and consequently to the expressions for
Ji j (see also [14, 15]). It is important to note that, first, the new expression for D coincides
with the old one and, second, these corrections for the case of itinerant electron magnets
are formally small in adiabatic parameter η = �/� where � is a characteristic magnon
frequency and � is the Stoner spin splitting. At the same time, mapping of the local spin
density approximation (LSDA) onto the classical Heisenberg model itself is valid only in the
adiabatic approximation η → 0 [1, 2, 16]. If we are interested in higher-order effects in η, we
might need different effective exchange parameters for different physical properties. We will
show for few examples that this is exactly the case. It turns out that the spin-wave excitation
spectrum should be calculated in terms of ‘old’ exchange integrals [1, 2], whereas for static
properties the ‘new’ exchange integrals [13, 14] are more appropriate.

The most reliable way to consider spin-wave properties of itinerant electron magnets in the
framework of the spin density functional theory is by the use of frequency-dependentmagnetic
susceptibility [17–19]. One should start from the time-dependent density functional theory in
the adiabatic approximation (ADA-TDDFT) [20, 21]. We proceed with the Schrödinger-like
equation within the self-consistent ADA-TDDFT potential

i
∂ψ

∂ t
= Hψ

H = −∇2 + V (r)− 1
2 (Bxc(r) + Bext(r))σ

(1)

(Slater’s units are used here) where V(r) is an effective potential,Bext(r) and Bxc(r) are external
magnetic field acting on spin and exchange–correlation field, respectively. The adiabatic
approximation means that the functional dependences of the exchange–correlation potential
and field on the charge and spin density are supposed to be the same as in the stationary case.
In the LSDA one has

V (r) = Vext(r) +
∫

dr′ n(r′)
|r − r′| +

∂

∂n
[nεxc]

Bxc = −2
m
m

∂

∂m
[nεxc]

(2)

where n and m are charge and spin densities, εxc is the exchange–correlation energy per
particle, Vext is the external potential, i.e. the Coulomb potential of nuclei. To calculate the
spin susceptibility we will assume Bext(r) → 0. This leads to the effective complete ‘non-
equilibrium’ field

δBα
tot = δBα

ext +
δBα

xc

δmβ
δmβ (3)

where αβ are Cartesian indices and the sum over repeated indices is assumed.
By definition of the exact non-local frequency-dependent spin susceptibility χ̂αβ , the

variation of the spin density is equal to

δmα = χ̂αβδBβ
ext. (4)

The operator product is defined here as usual:

(χ̂ϕ)(r) =
∫

dr′ χ(r, r′)ϕ(r′). (5)
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On the other hand, it was shown in [20] that in the time-dependent density functional theory
we should have exactly

δmα = χ̂
αβ

0 δBβ
tot (6)

where χ̂αβ0 is the susceptibility of an auxiliary system of free Kohn–Sham particles. This was
demonstrated originally for the charge excitations but the generalization of TDDFT for the
spin-polarized case [21], shows that equation (6) holds also for spin excitations. Comparing
the two expressions for δmα we have the following equation:

χ̂αβ = χ̂
αβ

0 + χ̂αγ0

δBγ
xc

δmδ
χ̂ δβ . (7)

This ‘RPA-like’ equation is formally exact in ADA-TDDFT. For the local spin density
approximation (equation (2)) one has

δBγ
xc

δmδ
= Bxc

m

(
δγ δ − mγmδ

m2

)
+

mγmδ

m2

∂Bxc

∂m
. (8)

The first term in equation (8) is purely transverse and the second one is purely longitudinal
with respect to the local magnetization vector. In collinear magnetic structures there are no
couplings between the longitudinal (mz) and transverse (m± = mx ± im y y) components and
for the transverse dynamical spin susceptibility dependent on the frequency ω we have the
following equation:

χ+−(r, r′, ω) = χ+−
0 (r, r′, ω) +

∫
dr′′ χ+−

0 (r, r′′, ω)Ixc(r′′)χ+−(r′′, r′, ω) (9)

where

Ixc = Bxc

m
(10)

is an exchange–correlation ‘Hund’s rule’ interaction, the magnetic and charge electron density
being defined as usual:

m =
∑
µσ

σ fµσ |ψµσ (r)|2

n =
∑
µσ

fµσ |ψµσ (r)|2.
(11)

The bare susceptibility has the following form:

χ+−
0 (r, r′, ω) =

∑
µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

ψ∗
µ↑(r)ψν↓(r)ψ

∗
ν↓(r

′)ψµ↑(r′) (12)

where ψµσ and εµσ are eigenstates and eigenvalues for the Kohn–Sham quasiparticles:

(H0 − 1
2σ Bxc)ψµσ = εµσψµσ

H0 = −∇2 + V (r)
(13)

and fµσ = f
(
εµσ

)
is the Fermi distribution function.

The derivation of the longitudinal spin susceptibility is similar to those presented above
with a small complication, since we have to consider separately the responses of spin-up and
spin-down electrons. Suppose we have an external perturbation δV σ

ext. This leads to a change
of the exchange–correlation potential V σ

xc = ∂(nεxc)

∂nσ
(nσ = 1

2 (n + σm)), namely,

δV σ
xc = Uσσ ′δnσ ′

Uσσ ′ = ∂2 (nεxc)

∂nσ ∂nσ ′

(14)
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which gives the total perturbation δV σ
tot = δV σ

ext + δV σ
xc. One can introduce the response

functions K σσ ′
via the formal expression

δnσ = K σσ ′
δV σ ′

ext. (15)

Then the longitudinal spin susceptibility can be expressed in terms of the K -functions as

χ zz = 1
4

(
K ↑↑ + K ↓↓ − K ↑↓ − K ↓↑) . (16)

At the same time, according to the general scheme of TDDFT, we have

δnσ = X̂σ δV σ
tot (17)

where

Xσ

(
r, r′) =

∑
µν

fµσ − fνσ
ω − εµσ + ενσ

ψ∗
µσ (r)ψνσ (r)ψµσ (r

′)ψ∗
νσ (r

′). (18)

Comparing these two expressions for δnσ one obtains

K ↑↑ = X↑ + X↑U↑↑K ↑↑ + X↑U↑↓K ↓↑

K ↓↓ = X↓ + X↓U↓↓K ↓↓ + X↓U↓↑K ↑↓

K ↑↓ = X↑U↑↓K ↓↓ + X↑U↑↑K ↑↓

K ↓↑ = X↓U↓↑K ↑↑ + X↓U↓↓K ↓↑.

(19)

Similar expressions have been obtained in the RPA for the Hubbard model in [22]. A coupling
between the longitudinal spin and density degrees of freedom is important also for the electronic
structure calculations which take into account correlation effects [9, 23].

Let us continue the derivation of useful expression for the transverse susceptibility
(equation (9)). In order to consider the case of small ω it is useful to make some identical
transformations of the kernel (12), similar to the Hubbard model considerations [24]. Using
equation (13) one can find

Bxcψµ↑ψ∗
ν↓ = (

εν↓ − εµ↑
)
ψ∗
ν↓ψµ↑ + ∇(ψµ↑∇ψ∗

ν↓ − ψ∗
ν↓∇ψµ↑). (20)

Substituting equation (20) into (12) we obtain

(χ+−
0 Bxc)(r, r′, ω) = m(r)δ(r − r′)− ωχ+−

0 (r, r′, ω) (21)

where we used the completeness condition∑
µ

ψ∗
µσ (r)ψµσ (r

′) = δ(r − r′). (22)

Substituting equation (21) into (12) we can transform the latter expression to the following
form:

χ̂+− = χ̂+−
0 + χ̂+−

0

Bxc

m
χ̂+− = χ̂+−

0 + χ̂+− − ωχ̂+−
0

1

m
χ̂+− +

�̂

m
χ̂+− (23)

or, equivalently,

χ̂+− = m[ω − (χ̂+−
0 )−1�̂]−1 (24)

where

�(r, r′, ω) =
∑
µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

ψ∗
µ↑(r)ψν↓(r)∇[ψµ↑(r′)∇ψ∗

ν↓(r
′)− ψ∗

ν↓(r
′)∇ψµ↑(r′)].

(25)

Using equations (12), (24) one has finally

χ̂+− = (m + �̂)(ω − Ixc�̂)
−1 (26)
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which is exactly equivalent to equation (9) but much more suitable for investigation of the
magnon spectrum. Spin-wave excitations can be separated from the Stoner continuum (e.g.,
paramagnons) only in the adiabatic approximation, which means the replacement�(r, r′, ω)by
�(r, r′, 0) in equation (26). Otherwise, one should just find the poles of the total susceptibility,
and the whole concept of ‘exchange interactions’ is not uniquely defined. Nevertheless,
formally we can introduce the effective exchange interactions via the quantities

�(r, r′, ω) = Ixc�(r, r′, ω). (27)

Substituting equation (20) into (26) we get

�(r, r′, ω) =
∑
µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

ψ∗
µ↑(r)ψν↓

[
Bxc(r′)− εν↓ + εµ↑

]
ψ∗
ν↓(r

′)ψµ↑(r′). (28)

Therefore

�(r, r′, ω) = 4

m(r)
J (r, r′, ω) + Ixc(r)

∑
µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

× (
εµ↑ − εν↓

)
ψ∗
µ↑(r)ψν↓(r)ψ

∗
ν↓(r

′)ψµ↑(r′) (29)

where an expression for frequency-dependent exchange interactions has the following form:

J (r, r′, ω) = 1

4

∑
µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

ψ∗
µ↑(r)Bxc(r)ψν↓(r)ψ∗

ν↓(r
′)Bxc(r′)ψµ↑(r′). (30)

The latter coincides with the exchange integrals [1, 2, 25] if we neglect the ω-dependence.
Since Bxc ∼ m we have J ∼ m2 and the expression (30) vanishes in the non-magnetic case,
as it should. Using the identity (22) one can show that

�(r, r′, 0) = 4

m(r)
J (r, r′, 0)− Bxc(r)δ(r − r′). (31)

Note that for ω = 0 we have exactly

−Ixc�̂ = �̂

and the static susceptibility χ̂+− (0) can be represented in the form

χ̂+− (0) = m(�̂−1 − B−1
xc ) (32)

which is equivalent to the result of [13]

ˆ̃
� = �̂(1 − B−1

xc �̂)
−1 (33)

for the renormalized exchange interactions if one defines them in terms of inverse static
susceptibility [14, 15].

As was stressed above, for a generic case of an itinerant electron magnet it is impossible
to introduce the effective exchange integrals and one should work with the generalized spin
susceptibility. Any definition of the exchange integrals assumes the adiabatic approximation
somewhere. For the spin-wave spectrum which is determined by the pole of the transverse
susceptibility it is natural to formulate an ‘exchange concept’: neglect of the ω-dependence
in �̂. Then, by virtue of equation (26) the magnon frequencies are just eigenstates of the
operator �̂ (0) which exactly corresponds to the expression from the ‘old’ MFT exchange
interactions [1, 2]. Note that for the long-wavelength limit q → 0 this result turns out to be
exact, which proves the above statement about the stiffness constant D: in the framework of
the local approximation it is rigorous. Corrections to D from a non-locality of the exchange–
correlation potential have been estimated recently [26] for Fe and Ni; they turned out to be
small.
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At the same time, if we are interested in the computations of the thermodynamic properties
such as the Curie temperature TC, the renormalized exchange integrals can really give more
accurate results. One can introduce for the itinerant electron magnets the magnon-like operators

bq = 1√
m0

S−
q b†

q = 1√
m0

S+
q (34)

where m0 = 2S is the ground-state magnetization and write for the temperature dependence
of the magnetization the Bloch-like expression

m (T ) = m0 −
∑

q

〈
b†

qbq
〉 = m0 +

1

m0

∑
q

∫ ∞

−∞
dω

Im χ+−(q, ω)
exp(ω/T )− 1

(35)

(a similar approximation for the Hubbard model has been proposed in [24]). If we use the
classical spin approximation usually exploited for first-principles estimations of the Curie
temperature, we should replace the Planck function in equation (35) by its classical limit T/ω
which immediately gives (taking into account the Kramers–Kronig relations) the following
expression for the Curie temperature:

1

TC
= 1

m2
0

∑
q

χ+−(q, ω = 0) (36)

which is identical to the expression from [13] in terms of the renormalized exchange
interactions. Note, however, that the quantum character of the spin (which can be taken into
account only beyond the LSDA) is probably very much essential for a proper description
of high-temperature magnetism of transition metals [27], which makes the problem of
improvement of classical estimations of TC less important.

In order to test different approximations to the exchange interactions we calculated spin-
wave spectrum for iron and nickel using the LMTO-TB method [28]. The orthogonal LMTO
representation was used and the calculation scheme was the following.

The matrix of the Green function in the s, p, d basis set is equal to

Gσ (k, ωn) = [
iωn + µ− H σ

LDA(k)
]−1

(37)

where µ is the chemical potential, ωn are Matsubara frequencies and HLDA is the orthogonal
LSDA Hamiltonian. We use the following approximation for the matrix Ixc:

Vxc ≡ m Ixc = H ↑
LDA(0)− H ↓

LDA(0). (38)

The matrix of the LDA susceptibility has been calculated using the fast Fourier transform
technique with k = (k, ωn):

χ+−
0 (q) = −

∑
k

G↑(k) ∗ G↓(k + q). (39)

The Fourier transform of the ‘bare’ exchange interactions Ĵ (0) (30) is defined as

J (q) = 1
4 Vxcχ

+−
0 (q, ω = 0)Vxc (40)

whereas for the ‘renormalized’ exchange integrals [13, 14] one has

J̃ (0)− J̃ (q) = 1
4 TrL [m

(
χ+−(q, ω = 0)

)−1
m]

= 1
4 TrL

[
m

((
χ+−

0 (q, ω = 0)
)−1 − (

χ+−
0 (q = 0, ω = 0)

)−1
)

m
]

(41)

where TrL means the trace over orbital indices. The magnon spectrum is determined via the
exchange integrals as

ω(q) = 4

M

[
J (0)− J (q)

]
(42)
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Figure 1. The spin-wave spectrum for ferromagnetic iron
in the bare exchange (equation (40)) and renormalized
exchange (equation (41)) schemes in comparison with
experimental data (from [29]).

Figure 2. The spin-wave spectrum for ferromagnetic
nickel in the bare exchange (equation (40)) and
renormalized exchange (equation (41)) schemes in
comparison with experimental data (from [29]).

Table 1. The Curie temperature (in K) for Fe and Ni calculated with the bare (equation (40))
and renormalized (equation (41)) LDA exchange interactions; ‘M’ is the mean-field approximation
Tc = 2/3J (0) and ‘T’ is the Tjablikov, or RPA, approximation for Tc, similar to equation (36).

Tc (K) Exp. Bare-M Renorm.-M Bare-T Renorm.-T

Fe 1045 1060 1620 820 1280
Ni 631 310 760 285 630

where M = TrL(m) is the total magnetic moment. One can see from figures 1 and 2 that the
LDA ‘bare’ exchange parameter describes the spin-wave spectra of Fe and Ni better, while
the thermodynamics (e.g. the Curie temperature—see table 1) is more reasonable with the
exact static LDA exchange (which is the ‘RPA’-like expression). Of course, one should not
overestimate the accuracy of an approach based on adiabatic exchange parameters. As is
emphasized above, there is no unique, unambiguous procedure for mapping the spin density
functional to the classical Heisenberg model. It is especially important for discussion of
calculated values of the Curie temperature. For example, the quantum character of the spin
leads to enhancement of Tc by the factor (S + 1)/S for the Heisenberg model with spin S in the
mean-field approximation. A similar enhancement should be important also for itinerant
electron magnets [1, 27]. The situation with the spin-wave spectrum is better, since the
expression [1] for the stiffness constant appears to be exact in the local density approximation.
This is also true in the dynamical mean-field theory for exchange interactions [8], as is proven
in [12]. For finite magnon wavevectors, both ‘old’ [1, 2] and ‘new’ [13, 14] expressions should
be considered as approximate ones in comparison with a more rigorous approach based on the
calculations of dynamical transverse susceptibility. We have shown that the ‘new’ expression
for exchange integrals does correspond better to the static magnetic susceptibility. However,
the expression for the magnon frequency in terms of exchange integrals (42) is valid only in the
Heisenberg model. For itinerant magnets, the ‘old’ exchange integrals for spin-wave spectra
give better results due to an ‘error cancellation’, that is, cancellation of the renormalization of
static susceptibility and of the residue of dynamic susceptibility in the magnon pole as is seen
from equation (26). This conclusion is confirmed by our computational results for Fe and Ni.
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